Search

A Simple Web App for Image Generation with Dall-E 3 using Go + HTMX

Mar 23, 2025

GoHTMXDall-E
A Simple Web App for Image Generation with Dall-E 3 using Go + HTMX

What Will We Build? And My Motivation

In this post, we’ll build a single-page web application that generates images using OpenAI’s DALL-E 3 API. The app features:

  • A simple and yet beautiful UI built with Tailwind CSS and DaisyUI
  • HTMX for frontend interactions without JavaScript
  • Capability of sending multiple requests to the Dall-E 3 API concurrently

App screenshot: app-screenshot

I’ve been itching to play around with Go and HTMX 🀩, so I figured, why not build a simple web app with them? Plus, I’ve been needing to generate AI images every now and thenβ€”like for this blog post’s cover image. Instead of generating one image at a time and picking through them manually, I thought it’d be way more convenient to build a little app that spits out a bunch of options at once and lets me easily pick the best one.

This is not a step-by-step tutorial. Instead, I will focus on introducing the main ideas and highlighting the key parts of the code. For the complete source code, please refer to my repository gen-img.

See section How to Run for the instructions to run the app.

Introduction to HTMX and Templ

HTMX is a modern library that simplifies building dynamic, interactive web applications using HTML attributes. It enables features like AJAX requests, CSS transitions, and server-side rendering without requiring complex JavaScript. By extending HTML with attributes such as hx-get, hx-post, hx-target, and hx-swap, HTMX allows developers to create seamless user experiences with minimal effort.

When paired with Go and the Go Templ package, HTMX becomes a powerful tool for building server-rendered web applications. The Go Templ package is a templating engine that lets you dynamically generate HTML on the server side. HTMX complements this by handling client-side interactions, enabling smooth DOM updates without full page reloads.

To build UIs with Templ, you write .templ files, which mix HTML and Go code. These files are compiled into normal Go code using the templ generate command (or automatically via live-reloading tools like Air). This approach feels similar to writing TSX in React or using the view! macro in Rust’s Leptos framework.

Together, HTMX and Templ leverage the strengths of both technologies: Go’s performance and simplicity for server-side logic, and HTMX’s lightweight approach to enhancing HTML for dynamic behavior. This combination provides a streamlined workflow for building modern, efficient, and maintainable web applications.

Project Structure

gen-img/
β”œβ”€β”€ cmd/
β”‚ └── web/
β”‚ └── main.go // Application entry point
β”œβ”€β”€ internal/
β”‚ └── templs/
β”‚ β”œβ”€β”€ components/ // Reusable UI components
β”‚ β”œβ”€β”€ layouts/ // Page layouts
β”‚ └── pages/ // Pages
β”œβ”€β”€ pkg/
β”‚ └── genimg/ // Image generation package
β”‚ β”œβ”€β”€ genimg.go // Core image generation logic
β”‚ └── genimg_test.go // Tests
β”œβ”€β”€ .air.toml // Air configuration
β”œβ”€β”€ .env.example // Environment variables template
β”œβ”€β”€ go.mod // Go module file
└── go.sum // Go dependencies checksum

Setup

Gin

We use Gin as the backend framework.

Add it to your project:

Terminal window
go get github.com/gin-gonic/gin

Templ

Even though this app is simple enough, you don’t want to write every component in a single HTML file.

Templ is a powerful templating engine for Go that allows us to scaffold the app in a modular way. We’ll use it to build our UI components and pages.

Add the templ package:

Terminal window
go get github.com/a-h/templ/cmd/templ@latest

If you are developing in VSCode, you may isntall the extension templ-vscode to get syntax highlighting and autocompletion for .templ files.

Air

Air is a live reload tool for Go applications. It watches your files for changes and automatically rebuilds and restarts your application.

Install Air:

Terminal window
go install github.com/cosmtrek/air@latest

Once installed, you can run the air command in your project directory. By default, Air will look for a .air.toml configuration file in the current directory for any custom settings.

To get started, create a .air.toml file in your project’s root directory. Then, as recommended in the documentation, copy the default full configuration into it.

we will modify the following sections with the explanations below:

  • build.pre_cmd: Prevent generating file pre_cmd.txt
  • build.cmd: Customize the command to build the main file located at ./cmd/web/main.go
  • build.post_cmd: Prevent generating file post_cmd.txt
  • build.include_ext: Watch the .templ files
.air.toml
# Working directory
# . or absolute path, please note that the directories following must be under root.
root = "."
tmp_dir = "tmp"
[build]
# Array of commands to run before each build
pre_cmd = ["echo 'this is pre cmd'"]
# Just plain old shell command. You could use `make` as well.
cmd = "templ generate && go build -o ./tmp/main ./cmd/web/main.go"
# Array of commands to run after ^C
post_cmd = ["echo 'this is post cmd'"]
# Binary file yields from `cmd`.
bin = "tmp/main"
# Customize binary, can setup environment variables when run your app.
full_bin = "APP_ENV=dev APP_USER=air ./tmp/main"
# Add additional arguments when running binary (bin/full_bin). Will run './tmp/main hello world'.
args_bin = ["hello", "world"]
# Watch these filename extensions.
include_ext = ["go", "tpl", "tmpl", "html", "templ"]
# ...

HTMX

To use HTMX, simply include the CDN link in the HTML head:

internal/templs/layouts/base_layout.templ
package layouts
templ BaseLayout(title string) {
<!DOCTYPE html>
<html lang="en" data-theme="dark">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>{ title }</title>
// HTMX
<script src="https://unpkg.com/htmx.org"></script>
</head>
<body class="h-screen overflow-clip">
{ children... }
</body>
</html>
}

Tailwind CSS v4 + DaisyUI

I usually use Tailwind CSS (now on v4) and Shadcn UI for my frontend projects. But since this project doesn’t use a framework like React or Vue, Shadcn is not applicable.

Instead, I’m going with DaisyUI. It is a nice UI library with ready-to-use components and utilities. The best part? You can just include it via CDNβ€”no setup needed.

Add these to the base layout file:

internal/templs/layouts/base_layout.templ
package layouts
templ BaseLayout(title string) {
<!DOCTYPE html>
<html lang="en" data-theme="dark">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>{ title }</title>
// HTMX
<script src="https://unpkg.com/htmx.org"></script>
// Tailwind CSS v4
<script src="https://cdn.jsdelivr.net/npm/@tailwindcss/browser@4"></script>
// Daisy UI
<link href="https://cdn.jsdelivr.net/npm/daisyui@5" rel="stylesheet" type="text/css" />
// Daisy UI Themes
<link href="https://cdn.jsdelivr.net/npm/daisyui@5/themes.css" rel="stylesheet" type="text/css" />
</head>
<body class="h-screen overflow-clip">
{ children... }
</body>
</html>
}

Backend: Send Multiple Requests to OpenAI Concurrently

Send a Single Request

The core functionality starts with the GenerateImage function that sends a single request to the DALL-E 3 API:

pkg/genimg/genimg.go
func GenerateImage(endpoint string, apiKey string, prompt string, imageSize string) (string, error) {
// Create the payload
payload := map[string]any{
"model": "dall-e-3",
"prompt": prompt,
"size": imageSize,
"response_format": "url",
}
// Convert to JSON
payloadJson, err := json.Marshal(payload)
if err != nil {
return "", err
}
// Create the request
req, err := http.NewRequest("POST", endpoint, bytes.NewBuffer(payloadJson))
if err != nil {
return "", err
}
// Set the headers
req.Header.Set("Content-Type", "application/json")
req.Header.Set("Authorization", "Bearer "+apiKey)
// Send the request
client := &http.Client{}
resp, err := client.Do(req)
if err != nil {
return "", err
}
// Read the response body
body, err := io.ReadAll(resp.Body)
defer resp.Body.Close()
if err != nil {
return "", err
}
// Decode the JSON response into a struct
var responseData imageGenerationResponseData
err = json.Unmarshal(body, &responseData)
if err != nil {
return "", err
}
// Get the image URL
if len(responseData.Data) == 0 {
return "", errors.New("data is empty")
}
imageUrl := responseData.Data[0].Url
return imageUrl, nil
}

Send Multiple Requests

You may notice from OpenAI’s API documentation that there is a n parameter that allows us to generate multiple images concurrently. So, why not just send a single request with the n parameter set to the number of images we want to generate? I tried, but it told me that the model doesn’t support it yet πŸ˜‚.

To generate multiple images efficiently, we use a worker pool pattern with goroutines. This approach allows us to handle concurrent requests to the API without overwhelming it, while still maintaining good performance. Let’s see the code:

pkg/genimg/genimg.go
func GenerateImages(ctx context.Context, endpoint string, apiKey string, prompt string, imageSize string, numImages int, maxWorkers int) []string {
// A buffered channel of all image URLs to return
imageUrlChan := make(chan string, numImages)
// A buffered channel of all requests to send
jobChan := make(chan struct{}, numImages)
// Create a wait goup
var wg sync.WaitGroup
for range maxWorkers {
// Increment the wait group
wg.Add(1)
// Start a worker
go worker(ctx, &wg, endpoint, apiKey, prompt, imageSize, jobChan, imageUrlChan)
}
// Send the jobs
for range numImages {
jobChan <- struct{}{}
}
// Done sending jobs
close(jobChan)
go func() {
// Wait for the wait group to finish
wg.Wait()
// Close the channel
close(imageUrlChan)
}()
// Slice of all URLs of generated images
var imageUrls []string
for imageUrl := range imageUrlChan {
imageUrls = append(imageUrls, imageUrl)
}
return imageUrls
}
func worker(ctx context.Context, wg *sync.WaitGroup, endpoint string, apiKey string, prompt string, imageSize string, jobChan <-chan struct{}, imageUrlChan chan<- string) {
// Decrement the wait group counter
defer wg.Done()
for range jobChan {
select {
case <-ctx.Done():
return
default:
// Generate a single image
imageUrl, err := GenerateImage(endpoint, apiKey, prompt, imageSize)
// Collect the image URL
if err == nil {
imageUrlChan <- imageUrl
}
}
}
}

Key points of this implementation:

  • Buffered Channels:
    • jobChan is used to distribute jobs (tasks) to workers.
    • imageUrlChan collects the results (generated image URLs) from workers.
  • Worker Pool:
    • A configurable number of worker goroutines maxWorkers are spawned to handle jobs concurrently.
  • Context Handling:
    • The ctx.Done() check ensures that workers can gracefully exit if the context is canceled (e.g., due to a timeout).
  • Asynchronous Result Collection:
    • Results are collected in a separate goroutine, allowing the main function to return all generated image URLs once all workers are done.
  • Wait Group:
    • The sync.WaitGroup ensures that the main function waits for all workers to finish before closing the imageUrlChan.

The worker pool pattern is ideal for this use case because:

  • It limits the number of concurrent requests to the API, preventing overload.
  • It maximizes efficiency by processing multiple requests in parallel.
  • It ensures that all results are collected and returned in a structured way.

Set Up the Gin Router

In this section, we configure the Gin router to handle two main routes: / for rendering the home page and /generate for processing form submissions to generate images.

cmd/web/main.go
package main
import (
"context"
"gen-img/internal/templs/components"
"gen-img/internal/templs/pages"
"gen-img/pkg/genimg"
"os"
"strconv"
"time"
"github.com/gin-gonic/gin"
"github.com/joho/godotenv"
)
const numWorkers = 10
func main() {
// Load the dotenv
err := godotenv.Load()
if err != nil {
panic(err)
}
// Get the API key
apiKey := os.Getenv("OPENAI_API_KEY")
if apiKey == "" {
panic("OPENAI_API_KEY is not set")
}
router := gin.Default()
// Render the home page
router.GET("/", func(ctx *gin.Context) {
pages.Home().Render(ctx.Request.Context(), ctx.Writer)
})
router.POST("/generate", func(ctx *gin.Context) {
// Get fields from the submitted form data
endpoint := ctx.PostForm("endpoint")
prompt := ctx.PostForm("prompt")
imageSize := ctx.PostForm("imageSize")
numImagesAsString := ctx.PostForm("numImages")
numImages, err := strconv.Atoi(numImagesAsString)
if err != nil {
panic(err)
}
// Create a context with a timeout
c, cancel := context.WithTimeout(context.Background(), 60*time.Second)
defer cancel()
// Send the request to generate the images
images := genimg.GenerateImages(c, endpoint, apiKey, prompt, imageSize, numImages, numWorkers)
// Render the image list
// HTMX will plug it in under the image list container
components.ImageList(images).Render(ctx.Request.Context(), ctx.Writer)
})
router.Run()
}

Frontend: Build the UI in .templ Files

The UI is built using templ components. The main structure consists of:

  1. A base layout (internal/templs/layouts/base_layout.templ)
  2. A home page (the one and only page) (internal/templs/pages/home.templ)
  3. Reusable components (internal/templs/components/)

This design may seem familiar to you if you have ever used a modern frontend framework.

Base Layout

The base layout provides the common structure for all pages:

internal/templs/layouts/base_layout.templ
package layouts
templ BaseLayout(title string) {
<!DOCTYPE html>
<html lang="en" data-theme="dark">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>{ title }</title>
// HTMX
<script src="https://unpkg.com/htmx.org"></script>
// Tailwind CSS v4
<script src="https://cdn.jsdelivr.net/npm/@tailwindcss/browser@4"></script>
// Daisy UI
<link href="https://cdn.jsdelivr.net/npm/daisyui@5" rel="stylesheet" type="text/css" />
// Daisy UI Themes
<link href="https://cdn.jsdelivr.net/npm/daisyui@5/themes.css" rel="stylesheet" type="text/css" />
</head>
<body class="h-screen overflow-clip">
{ children... }
</body>
</html>
}

Home Page

The home page includes:

  • A header with the app title
  • A request form component that triggers the POST request /generate to the backend
  • A container for displaying generated images
internal/templs/pages/home.templ
package pages
import "gen-img/internal/templs/layouts"
import "gen-img/internal/templs/components"
templ Home() {
@layouts.BaseLayout("gen-img") {
<main class="flex flex-col h-full gap-8 p-8">
// Title
<header class="flex flex-col justify-center text-2xl font-bold">
gen-img
</header>
<div class="flex flex-row h-full justify-between gap-8">
<div class="flex flex-row gap-2">
// Request Form
@components.RequestForm()
// Divider
<div class="divider divider-horizontal">πŸ‘‰</div>
</div>
// Image List Container
// Its child will be replaced by a image list after the request is finished
<div id="image-list-container" class="overflow-y-auto h-full">
</div>
</div>
</main>
}
}

Note we assigned the ID image-list-container to the container element. In the request form component, the hx-target attribute is set to #image-list-container. This means that when the form is submitted, the response will automatically replace the content inside the image-list-container element. Thanks to HTMX, this results in a seamless update of the container without requiring a full page reload.

Request Form Component

The request form component handles user input and HTMX interactions:

internal/templs/components/request_form.templ
package components
import "gen-img/pkg/genimg"
templ RequestForm() {
<fieldset class="fieldset w-xs bg-base-200 border border-base-300 p-4 rounded-box">
<legend class="fieldset-legend">RequestForm</legend>
<form
hx-post="/generate"
hx-target="#image-list-container"
hx-swap="innerHTML"
hx-on="htmx:beforeRequest: this.setAttribute('data-loading', 'true')
htmx:afterRequest: this.removeAttribute('data-loading')"
class="flex flex-col gap-4 group"
>
// API Endpoint
<label class="fieldset-label">Endpoint</label>
<label class="input validator">
<svg class="h-[1em] opacity-50" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><g stroke-linejoin="round" stroke-linecap="round" stroke-width="2.5" fill="none" stroke="currentColor"><path d="M10 13a5 5 0 0 0 7.54.54l3-3a5 5 0 0 0-7.07-7.07l-1.72 1.71"></path><path d="M14 11a5 5 0 0 0-7.54-.54l-3 3a5 5 0 0 0 7.07 7.07l1.71-1.71"></path></g></svg>
<input type="url" required placeholder="https://" name="endpoint" value={ genimg.OpenaiImagesApiEndpoint } pattern="^(https?://)?([a-zA-Z0-9]([a-zA-Z0-9\-].*[a-zA-Z0-9])?\.)+[a-zA-Z].*$" title="Must be valid URL" />
</label>
// Prompt
<label class="fieldset-label">Prompt</label>
<textarea
name="prompt"
placeholder="Enter your prompt..."
class="textarea"
/>
// Image Size
// Either square 1024x1024 or landscape 1792x1024
<label class="fieldset-label">Image Size</label>
<div class=" flex flex-row gap-4">
<div class="flex flex-row gap-2 items-center">
<input type="radio" name="imageSize" class="radio-sm" value={ genimg.ImageSizeLandscape } checked />
<label for="landscape">Landscape</label>
</div>
<div class="flex flex-row gap-2 items-center">
<input type="radio" name="imageSize" class="radio-sm" value={ genimg.ImageSizeSquare } />
<label for="square">Square</label>
</div>
</div>
// Number of Images
<label class="fieldset-label">Number of Images</label>
<input
type="number"
required placeholder="Type a number between 1 to 50"
name="numImages"
value="1"
min="1"
max="50"
title="Must be between be 1 to 50"
class="input validator"
/>
// Submit Button
<button
type="submit"
class="btn btn-neutral"
>
<span class="animate-spin size-6 group-data-[loading=true]:flex hidden" aria-hidden="true">
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24"><path fill="none" stroke="currentColor" strokeLinecap="round" strokeLinejoin="round" strokeWidth="2" d="M21 12a9 9 0 1 1-6.219-8.56"></path></svg>
</span>
Generate
</button>
</form>
</fieldset>
}

Image List Component

The image list component displays the generated images:

internal/templs/components/image_list.templ
package components
templ ImageList(images []string) {
<div class="image-list sm:grid flex flex-col md:grid-cols-3 sm:grid-cols-2 lg:grid-cols-4 gap-4">
for _, image := range(images) {
<img src={ image }/>
}
</div>
}

How to Run

  1. Clone the repository and go to the project directory:
Terminal window
git clone https://github.com/Isaac-Fate/gen-img.git
cd gen-img
  1. Install the dependencies:
Terminal window
go mod download
  1. Create a .env file and add your OpenAI API key:
Terminal window
cp .env.example .env

Fill in the .env file with your OpenAI API key.

  1. Run the application:
Terminal window
go run cmd/web/main.go

Since this ptoject uses Gin framework, you may run it in the realse mode setting the GIN_MODE environment variable to release:

Terminal window
GIN_MODE=release go run cmd/web/main.go

Also, you may also change the default port (8080) by setting the PORT environment variable:

Terminal window
PORT=8081 go run cmd/web/main.go
  1. Visit http://localhost:8080 (or the port you set) in your browser.

Comments πŸ’¬